Effects of Nitrogen Addition and Fire on Plant Nitrogen Use in a Temperate Steppe

نویسندگان

  • Hai-Wei Wei
  • Xiao-Tao Lü
  • Fu-Mei Lü
  • Xing-Guo Han
چکیده

Plant nitrogen (N) use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affected by both natural and anthropogenic disturbances, such as prescribed fire in the grassland. We examined the effects of N addition (5.25 g N m(-2) yr(-1)) and prescribed fire (annual burning) on plant N concentrations and N use characters at both species and community levels in a temperate steppe of northern China. We found that N addition and fire independently affected soil N availability and plant N use traits. Nitrogen addition increased aboveground net primary productivity (ANPP), inorganic N, and N uptake, decreased N response efficiency (NRE), but did not affect biomass-weighed N concentrations at community level. Prescribed fire did not change the community level N concentrations, but largely decreased N uptake efficiency and NRE. At the species level, the effects of N addition and fire on plant N use were species-specific. The divergent responses of plant N use at community and species levels to N addition and fire highlight the importance of the hierarchical responses of plant N use at diverse biological organization levels to the alteration of soil N availability. This study will improve our understanding of the responses of plant-mediated N cycling to global change factors and ecosystem management strategies in the semiarid grasslands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linking ethylene to nitrogen-dependent leaf longevity of grass species in a temperate steppe.

BACKGROUND AND AIMS Leaf longevity is an important plant functional trait that often varies with soil nitrogen supply. Ethylene is a classical plant hormone involved in the control of senescence and abscission, but its role in nitrogen-dependent leaf longevity is largely unknown. METHODS Pot and field experiments were performed to examine the effects of nitrogen addition on leaf longevity and...

متن کامل

Responses of Plant Community Composition and Biomass Production to Warming and Nitrogen Deposition in a Temperate Meadow Ecosystem

Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ec...

متن کامل

Nitrogen Addition and Warming Independently Influence the Belowground Micro-Food Web in a Temperate Steppe

Climate warming and atmospheric nitrogen (N) deposition are known to influence ecosystem structure and functioning. However, our understanding of the interactive effect of these global changes on ecosystem functioning is relatively limited, especially when it concerns the responses of soils and soil organisms. We conducted a field experiment to study the interactive effects of warming and N add...

متن کامل

Nitrogen effects on net ecosystem carbon exchange in a temperate steppe

It has widely been documented that nitrogen (N) enrichment stimulates plant growth and net primary production. However, there is still dispute on how N addition affects net ecosystem CO2 exchange (NEE), which represents the balance between ecosystem carbon (C) uptake and release. We conducted an experimental study to examine effects of N addition on NEE in a temperate steppe in northern China f...

متن کامل

Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe

Evaluating how autotrophic (SRA), heterotrophic (SRH) and total soil respiration (SRTOT) respond differently to changes of environmental factors is critical to get an understanding of ecosystem carbon (C) cycling and its feedback processes to climate change. A field experiment was conducted to examine the responses of SRA and SRH to water and nitrogen (N) addition in a temperate steppe in north...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014